# Introduction to DeepPavlov

Mikhail Burtsev, PhD Moscow Institute of Physics and Technology (MIPT)





#### DeepPavlov



- **DeepPavlov** is for
  - development of production ready chat-bots and complex conversational systems,
  - NLP and dialog systems **research**.
- **DeepPavlov's** goal is to enable AI-application developers and researchers with:
  - set of **pre-trained NLP models**, pre-defined dialog system components (ML/DL/Rulebased) and conversational **agents templates for a typical scenarios**;
  - a framework for **implementing** and testing their own **dialog models**;
  - tools for application **integration** with adjacent infrastructure (messengers, helpdesk software etc.);
  - **benchmarking** environment for conversational models and uniform access to relevant datasets.



iPavlov.ai



Dialogue system combines

complimentary skills to help user.







#### Core concepts



- Agent is a conversational agent communicating with users in natural language (text).
- Skill Manager performs selection of the Skill to generate response.
- Skill fulfills user's goal in some domain.
  Typically, this is accomplished by presenting information or completing transaction (e.g. answer question by FAQ, booking tickets etc.).
  However, for some tasks a success of interaction is defined as continuous engagement (e.g. chit-chat).





#### Core concepts

iPavlov.ai



• **Component** is a reusable functional component of **Skill**.

 Chainer builds an agent/component pipeline from heterogeneous Components (rulebased/ml/dl). It allows to train and infer models in a pipeline as a whole.







#### • Ubuntu

iPavlov.ai

Create a virtual environment with Python 3.6

virtualenv -p python3.6 env

Activate the environment.

source ./env/bin/activate

Clone the repo and cd to project root

git clone https://github.com/deepmipt/DeepPavlov.git cd DeepPavlov

Install the requirements:

python setup.py develop

Install spacy dependencies:

python -m spacy download en



• Windows

iPavlov.ai

Install the Docker following the instructions:

https://docs.docker.com/docker-for-windows/install

Then go to console and get the container by the following command:

docker pull altinsky/convai:deeppavlov

Run the container with DeepPavlov installation:

docker run -p 8888:8888 altinsky/convai:deeppavlov

Open http://127.0.0.1:8888/ in your browser to access Jupyter Notebook

Upload file with tutorial via Jupyter Notebook

To STOP the container:

docker stop

To continue working with your saved container:

docker ps -a **to list saved containers** docker start \_your\_container\_id\_





• Import core components of the dialogue Agent

```
from deeppavlov.core.agent import Agent, HighestConfidenceSelector
from deeppavlov.skills.pattern_matching_skill import PatternMatchingSkill
```

• Define responses and input patterns for Skills

Combine Skills with SkillManager (selector) into an Agent

HelloBot = Agent([hello, bye, fallback], skills\_selector=HighestConfidenceSelector())

• Talk with HelloBot!

```
HelloBot(['Hello', 'Bye', 'Or not'])
```

```
['Hello world!', 'See you around', 'I can say "Hello world!"']
```





- Simple skills are boring!
- Trainable skills are cool!







- How to build advanced bot
  - for every Skill
    - prepare data
    - define trainable model
    - train model
  - create SkillManager = SkillSelector + SkillFilter
  - assemble Skills and SkillManager into an Agent

iPavlov.ai





- Data preparation
  - Read data DatasetReader
  - Index data Vocab
  - Manage Data DatasetIterator

iPavlov.ai



#### Features

iPavlov.ai



MOSCOW INSTITUTE

| Component                                       | Description                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NER component                                   | Based on neural Named Entity Recognition network. The NER component reproduces architecture from the paper <u>Application of a</u><br><u>Hybrid Bi-LSTM-CRF model to the task of Russian Named Entity Recognition</u> which is inspired by Bi-LSTM+CRF architecture<br>from <u>https://arxiv.org/pdf/1603.01360.pdf</u> .                                                                              |
| Slot filling components                         | Based on fuzzy Levenshtein search to extract normalized slot values from text. The components either rely on NER results or perform needle in haystack search.                                                                                                                                                                                                                                         |
| Classification component                        | Component for classification tasks (intents, sentiment, etc). Based on shallow-and-wide Convolutional Neural Network architecture from Kim Y. Convolutional neural networks for sentence classification – 2014 and others. The model allows multilabel classification of sentences.                                                                                                                    |
| Automatic spelling correction<br>component      | Pipelines that use candidates search in a static dictionary and an ARPA language model to correct spelling errors.                                                                                                                                                                                                                                                                                     |
| Ranking component                               | Based on LSTM-based deep learning models for non-factoid answer selection. The model performs ranking of responses or contexts from some database by their relevance for the given context.                                                                                                                                                                                                            |
| Question Answering component                    | Based on <u>R-NET: Machine Reading Comprehension with Self-matching Networks</u> . The model solves the task of looking for an answer on a question in a given context ( <u>SQuAD</u> task format).                                                                                                                                                                                                    |
| Morphological tagging component                 | Based on character-based approach to morphological tagging <u>Heigold et al., 2017. An extensive empirical evaluation of character-based morphological tagging for 14 languages</u> . A state-of-the-art model for Russian and several other languages. Model assigns morphological tags in UD format to sequences of words.                                                                           |
| Skills                                          |                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u>Goal-oriented bot</u>                        | Based on Hybrid Code Networks (HCNs) architecture from Jason D. Williams, Kavosh Asadi, Geoffrey Zweig, Hybrid Code Networks: practical and efficient end-to-end dialog control with supervised and reinforcement learning – 2017. It allows to predict responses in goal-oriented dialog. The model is customizable: embeddings, slot filler and intent classifier can switched on and off on demand. |
| Seq2seq goal-oriented bot                       | Dialogue agent predicts responses in a goal-oriented dialog and is able to handle multiple domains (pretrained bot allows calendar scheduling, weather information retrieval, and point-of-interest navigation). The model is end-to-end differentiable and does not need to explicitly model dialogue state or belief trackers.                                                                       |
| ODQA                                            | An open domain question answering skill. The skill accepts free-form questions about the world and outputs an answer based on its Wikipedia knowledge.                                                                                                                                                                                                                                                 |
| Embeddings                                      |                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pre-trained embeddings for the Russian language | Word vectors for the Russian language trained on joint <u>Russian Wikipedia</u> and <u>Lenta.ru</u> corpora.                                                                                                                                                                                                                                                                                           |
| +                                               | Δ                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Some results





#### Some results



| Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F <sub>1</sub> -score                                                                                                                             |                                                                                                              | spaCv                                                                                         |                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| DeepPavlov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $87.07 \pm 0.21$                                                                                                                                  |                                                                                                              | opacy                                                                                         |                                                                                                 |
| Strubell at al. (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $86.84 \pm 0.19$                                                                                                                                  |                                                                                                              |                                                                                               | • 2 • 0 • 0 • 2 •                                                                               |
| Spacy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85.85                                                                                                                                             |                                                                                                              | Speek                                                                                         | DeenDev                                                                                         |
| Chiu and Nichols (2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $86.19\pm0.25$                                                                                                                                    |                                                                                                              | Spacy                                                                                         | DeepPav                                                                                         |
| Durrett and Klein (2014) 84.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                   | TOTAL :                                                                                                      | 81.70                                                                                         | 87.07                                                                                           |
| Ratinov and Roth (2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83.45                                                                                                                                             | TOTAL                                                                                                        | 0                                                                                             |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   | CARDINAL:                                                                                                    | 77.40                                                                                         | 82.80                                                                                           |
| Table 3: Performance of Determine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eepPavlov <b>NER</b>                                                                                                                              | DATE:                                                                                                        | 81.63                                                                                         | 84.87                                                                                           |
| module on OntoNotes 5.0 dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | aset. Average $F_1$ -                                                                                                                             | EVENT:                                                                                                       | 50.47                                                                                         | 68.39                                                                                           |
| score for 18 classes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                 | FAC:                                                                                                         | 55.70                                                                                         | 68.07                                                                                           |
| lacon D Williams, Kayosh Asadi, ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                   | GPE:                                                                                                         | 91.95                                                                                         | 94.61                                                                                           |
| Cool originated dialogue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zweig. 2017. Hybrid code networks: practical and                                                                                                  | LANGUAGE :                                                                                                   | 41.18                                                                                         | 62.91                                                                                           |
| Goal-oriented dialogue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | efficient end-to-end dialog control with super-                                                                                                   | 1 4 14/ •                                                                                                    | FF F7                                                                                         |                                                                                                 |
| e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vised and reinforcement learning.                                                                                                                 | LAW                                                                                                          | 55.50                                                                                         | 48.27                                                                                           |
| Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vised and reinforcement learning.                                                                                                                 | LAW:<br>LOC:                                                                                                 | <b>55.56</b><br>63.92                                                                         | 48.27<br><b>72.39</b>                                                                           |
| Model<br>Bordes and Weston (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vised and reinforcement learning.<br>Test accuracy                                                                                                | LOC:<br>MONEY:                                                                                               | 63.92<br>87.34                                                                                | 48.27<br><b>72.39</b><br>87.79                                                                  |
| Model<br>Bordes and Weston (2016)<br>Perez and Liu (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vised and reinforcement learning.<br>Test accuracy<br>41.1%<br>48.7%                                                                              | LOC:<br>MONEY:<br>NORP:                                                                                      | 63.92<br>87.34<br>88.47                                                                       | 48.27<br>72.39<br>87.79<br>94.27                                                                |
| Model<br>Bordes and Weston (2016)<br>Perez and Liu (2016)<br>Eric and Manning (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vised and reinforcement learning.<br>Test accuracy<br>41.1%<br>48.7%<br>48.0%                                                                     | LAW:<br>LOC:<br>MONEY:<br>NORP:<br>ORDINAL:                                                                  | 63.92<br>87.34<br>88.47<br><b>79.63</b>                                                       | 48.27<br><b>72.39</b><br><b>87.79</b><br><b>94.27</b><br>79.53                                  |
| Model<br>Bordes and Weston (2016)<br>Perez and Liu (2016)<br>Eric and Manning (2017)<br>Williams et al. (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vised and reinforcement learning.<br>Test accuracy<br>41.1%<br>48.7%<br>48.0%<br>55.60                                                            | LAW:<br>LOC:<br>MONEY:<br>NORP:<br>ORDINAL:<br>ORG:                                                          | 63.92<br>87.34<br>88.47<br><b>79.63</b><br>82.66                                              | 48.27<br>72.39<br>87.79<br>94.27<br>79.53<br>85.59                                              |
| Model<br>Bordes and Weston (2016)<br>Perez and Liu (2016)<br>Eric and Manning (2017)<br>Williams et al. (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vised and reinforcement learning.<br>Test accuracy<br>41.1%<br>48.7%<br>48.0%<br>55.6%<br>55.6%                                                   | LAW:<br>LOC:<br>MONEY:<br>NORP:<br>ORDINAL:<br>ORG:<br>PERCENT:                                              | 63.92<br>87.34<br>88.47<br><b>79.63</b><br>82.66<br>89.08                                     | 48.27<br>72.39<br>87.79<br>94.27<br>79.53<br>85.59<br>89.41                                     |
| Model<br>Bordes and Weston (2016)<br>Perez and Liu (2016)<br>Eric and Manning (2017)<br>Williams et al. (2017)<br>Deeppavlov*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vised and reinforcement learning.<br>Test accuracy<br>41.1%<br>48.7%<br>48.0%<br>55.6%<br>55.0%                                                   | LAW:<br>LOC:<br>MONEY:<br>NORP:<br>ORDINAL:<br>ORG:<br>PERCENT:<br>PERSON:                                   | 55.56<br>63.92<br>87.34<br>88.47<br><b>79.63</b><br>82.66<br>89.08<br>79.48                   | 48.27<br>72.39<br>87.79<br>94.27<br>79.53<br>85.59<br>89.41<br>91.67                            |
| Model<br>Bordes and Weston (2016)<br>Perez and Liu (2016)<br>Eric and Manning (2017)<br>Williams et al. (2017)<br>Deeppavlov*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vised and reinforcement learning.<br>Test accuracy<br>41.1%<br>48.7%<br>48.0%<br>55.6%<br>55.0%<br>bot answers on                                 | LAW:<br>LOC:<br>MONEY:<br>NORP:<br>ORDINAL:<br>ORG:<br>PERCENT:<br>PERSON:<br>PRODUCT:                       | 63.92<br>87.34<br>88.47<br><b>79.63</b><br>82.66<br>89.08<br>79.48<br>57.14                   | 48.27<br>72.39<br>87.79<br>94.27<br>79.53<br>85.59<br>89.41<br>91.67<br>58.90                   |
| ModelBordes and Weston (2016)Perez and Liu (2016)Eric and Manning (2017)Williams et al. (2017)Deeppavlov*Table 2: Accuracy of predictinDSTC2 dataget *The former and the former and | vised and reinforcement learning.<br>Test accuracy<br>41.1%<br>48.7%<br>48.0%<br>55.6%<br>55.0%<br>ag bot answers on<br>much be commond           | LAW:<br>LOC:<br>MONEY:<br>NORP:<br>ORDINAL:<br>ORG:<br>PERCENT:<br>PERSON:<br>PRODUCT:<br>QUANTITY:          | 55.56<br>63.92<br>87.34<br>88.47<br><b>79.63</b><br>82.66<br>89.08<br>79.48<br>57.14<br>70.54 | 48.27<br>72.39<br>87.79<br>94.27<br>79.53<br>85.59<br>89.41<br>91.67<br>58.90<br>77.93          |
| ModelBordes and Weston (2016)Perez and Liu (2016)Eric and Manning (2017)Williams et al. (2017)Deeppavlov*Table 2: Accuracy of predictinDSTC2 dataset. *The figures can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vised and reinforcement learning.<br>Test accuracy<br>41.1%<br>48.7%<br>48.0%<br>55.6%<br>55.6%<br>55.0%<br>ag bot answers on<br>anot be compared | LAW:<br>LOC:<br>MONEY:<br>NORP:<br>ORDINAL:<br>ORG:<br>PERCENT:<br>PERSON:<br>PRODUCT:<br>QUANTITY:<br>TIME: | 63.92<br>87.34<br>88.47<br><b>79.63</b><br>82.66<br>89.08<br>79.48<br>57.14<br>70.54<br>60.31 | 48.27<br>72.39<br>87.79<br>94.27<br>79.53<br>85.59<br>89.41<br>91.67<br>58.90<br>77.93<br>62.50 |



## iPavlov.ai



### Interactive demo

http://demo.ipavlov.ai/

Source code

https://github.com/deepmipt/